Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrei S. Batsanov,* Jonathan C. Collings and Todd B. Marder

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.115$
Data-to-parameter ratio $=26.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Chloromethyl-4-(dimethylamino)- N, N-dimethylanilinium chloride

In the cation of the title compound $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$, the quaternary N atom has a distorted tetrahedral geometry, and the other N a nearly planar-trigonal (owing to conjugation with the benzene ring) bonding geometry.

Comment

The title compound, (I), was obtained as an accidental byproduct while co-crystallizing $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,4phenylenediamine (TMPD) and octafluoronaphthalene (OFN) from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Collings et al., 2004). The asymmetric unit comprises one chloride anion and one $\mathrm{Me}_{2}\left(\mathrm{ClCH}_{2}\right) \mathrm{N}^{+}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NMe}_{2}$ cation. This cation has been structurally studied earlier as its tetraphenylborate salt dichloromethane solvate (II) by Winter (2001), and the non-chlorinated analogue tri-methyl\{4-(dimethylamino)phenyl\}ammonium cation as its ozonide salt (III) by Assenmacher \& Jansen (1995). Unfortunately, the precision of both structure determinations was limited ($R=0.09$), in (III) owing to disorder of the ozonide anion and to chemical instability (the compound explodes at 303 K), and in (II) probably because of some unrecognized disorder, as indicated by the discrepant $\mathrm{N}^{+}-\mathrm{CH}_{3}$ bond lengths of 1.50 (1) and 1.62 (1) \AA.

(I)

The atom N2 has nearly planar geometry, the sum of the bond angles being 358.1°. The C10/N2/C11 plane forms an angle of $11.9(1)^{\circ}$ with the benzene ring plane, so that the $p \pi$ orbitals of N 2 and C 4 are nearly coplanar. This and the N2C4 bond distance of 1.371 (2) \AA are indicative of strong

(1) Cl 2

Figure 1
The cation and anion in the structure of (I). Atomic displacement ellipsoids are drawn at the 50% probability level.

Received 14 December 2004 Accepted 20 December 2004 Online 8 January 2005
π-conjugation. The quaternary atom N 1 has a distorted tetrahedral environment. The chloride anion is surrounded by eight H atoms of four different cations at $\mathrm{Cl} \cdots \mathrm{H}$ distances of 2.46 (2) to 2.60 (2) \AA (calculated for the idealized $\mathrm{C}-\mathrm{H}$ bond lengths of $1.08 \AA$).

Experimental

Slow evaporation at room temperature of a dichloromethane solution of equimolar amounts of TMPD and OFN yielded mainly co-crystals of TMPD and OFN (1:1) and a few smaller crystals of different habit, which were identified by the present study as (I).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{2}+\mathrm{Cl}^{-}$
$M_{r}=249.17$
Monoclinic, $P 2_{d} / c$
$a=15.121(3) \AA$
$b=7.234(1) \AA$
$c=12.773(2) \AA$
$\beta=114.95(1)^{\circ}$
$V=1266.8(4) \AA^{3}$
$Z=4$
Data collection
Bruker SMART 6000 CCD areadetector diffractometer ω scans
Absorption correction: by integration (XPREP in SHELXTL; Bruker, 2001b)
$T_{\text {min }}=0.923, T_{\text {max }}=0.962$
17336 measured reflections
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 977
reflections
$\theta=10.2-26.9^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Parallelepiped, colourless
$0.22 \times 0.15 \times 0.10 \mathrm{~mm}$

3689 independent reflections
2994 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-21 \rightarrow 21$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.115$
$S=1.05$
3689 reflections
138 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0621 P)^{2} \\
&+0.4607 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Methyl groups bonded to N 2 were refined as rigid bodies rotating around the $\mathrm{N} 2-\mathrm{C}$ bonds, and other H atoms were treated as riding on the corresponding C atoms in idealized positions. The $\mathrm{C}-\mathrm{H}$ distances were fixed at $0.98 \AA$ for methyl, $0.99 \AA$ for methylene, $0.95 \AA$ for benzene H atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the rest.

Data collection: SMART (Bruker, 2001a); cell refinement: SMART; data reduction: SAINT (Bruker, 2001a); program(s) used to solve structure: $S H E L X T L$ (Bruker, 2001b); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

References

Assenmacher, W. \& Jansen, M. (1995). Z. Kristallogr. 210, 704-706.
Bruker (2001a). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS, Madison, Wisconsin, USA.
Bruker (2001b). SHELXTL. Versions 5.10 \& 6.12. Bruker AXS, Madison, Wisconsin, USA.
Collings, J. C., Batsanov, A. S. \& Marder, T. B. (2004). Unpublished results.
Winter, R. (2001). PhD Thesis, Institut für Anorganische Chemie, University of Stuttgart, Germany. Cited from CCDC-175408, refcode XILVET.

